Handwritten HW 27

Page 310

28. Let A be an $n \times n$ real matrix with the property that $A^T = A$. Show that if $A\mathbf{x} = \lambda \mathbf{x}$ for some nonzero vector \mathbf{x} in \mathbb{C}^n , then, in fact, λ is real and the real part of \mathbf{x} is an eigenvector of A. [Hint: Compute $\overline{\mathbf{x}}^T A \mathbf{x}$, and use Exercise 27. Also, examine the real and imaginary parts of $A\mathbf{x}$.]

Solution:

Exercise 27 says, "Let A be an $n \times n$ real matrix with the property that $A^T = A$, let **x** be any vector in \mathbb{C}^n , and let $q = \overline{\mathbf{x}}^T A \mathbf{x}$. The equalities below show that q is a real number by verifying that $\overline{q} = q$."